We give conditions for the skew group ring S * G to be strongly separable and H-separable over the ring S. In particular we show that the H-separability is equivalent to S being central Galois extension. We also look into the H-separability of the ring S over the fixed subring R under a faithful action of a group G. We show that such a chain: S * G H-separable over S and S H-separable over R cannot occur, and that the centralizer of R in S is an Azumaya algebra in the presence of a central element of trace one.
@article{urn:eudml:doc:41717, title = {Non-commutative separability and group actions.}, journal = {Publicacions Matem\`atiques}, volume = {36}, year = {1992}, pages = {359-367}, mrnumber = {MR1209807}, zbl = {0788.16020}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41717} }
Alfaro, Ricardo. Non-commutative separability and group actions.. Publicacions Matemàtiques, Tome 36 (1992) pp. 359-367. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41717/