Non-commutative separability and group actions.
Alfaro, Ricardo
Publicacions Matemàtiques, Tome 36 (1992), p. 359-367 / Harvested from Biblioteca Digital de Matemáticas

We give conditions for the skew group ring S * G to be strongly separable and H-separable over the ring S. In particular we show that the H-separability is equivalent to S being central Galois extension. We also look into the H-separability of the ring S over the fixed subring R under a faithful action of a group G. We show that such a chain: S * G H-separable over S and S H-separable over R cannot occur, and that the centralizer of R in S is an Azumaya algebra in the presence of a central element of trace one.

Publié le : 1992-01-01
DMLE-ID : 4210
@article{urn:eudml:doc:41717,
     title = {Non-commutative separability and group actions.},
     journal = {Publicacions Matem\`atiques},
     volume = {36},
     year = {1992},
     pages = {359-367},
     mrnumber = {MR1209807},
     zbl = {0788.16020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41717}
}
Alfaro, Ricardo. Non-commutative separability and group actions.. Publicacions Matemàtiques, Tome 36 (1992) pp. 359-367. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41717/