Applications of the Euler characteristic in bifurcation theory.
Rybicki, Slawomir
Publicacions Matemàtiques, Tome 35 (1991), p. 527-535 / Harvested from Biblioteca Digital de Matemáticas

Let f: Rn x Rn → Rn be a continuous map such that f(0,λ) = 0 for all λ ∈ Rk. In this article we formulate, in terms of the Euler characteristic of algebraic sets, sufficient conditions for the existence of bifurcation points of the equation f(x,λ) = 0. Moreover we apply these results in bifurcation theory to ordinary differential equations. It is worth to point out that in the last paragraph we show how to verify, by computer, the assumptions of the theorems of this paper.

Publié le : 1991-01-01
DMLE-ID : 4205
@article{urn:eudml:doc:41711,
     title = {Applications of the Euler characteristic in bifurcation theory.},
     journal = {Publicacions Matem\`atiques},
     volume = {35},
     year = {1991},
     pages = {527-535},
     mrnumber = {MR1201574},
     zbl = {0746.58063},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41711}
}
Rybicki, Slawomir. Applications of the Euler characteristic in bifurcation theory.. Publicacions Matemàtiques, Tome 35 (1991) pp. 527-535. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41711/