Let f(z) and g(z) be holomorphic in the open unit disk D and let Zf and Zg be their zero sets. If Zf ⊃ Zg and |f(z)| ≥ |g(z)| (1/2 e-2 < |z| < 1), then
|| f || ≥ || g || where || · || is the Bergman norm: || f ||2 = π-1 ∫D |f(z)|2 dm (dm is the Lebesgue area measure).
@article{urn:eudml:doc:41707, title = {A maximum principle for the Bergman space.}, journal = {Publicacions Matem\`atiques}, volume = {35}, year = {1991}, pages = {479-486}, mrnumber = {MR1201570}, zbl = {0758.30020}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41707} }
Korenblum, Boris. A maximum principle for the Bergman space.. Publicacions Matemàtiques, Tome 35 (1991) pp. 479-486. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41707/