Supersolutions and stabilization of the solutions of the equation∂u/∂t - div(|∇p|p-2 ∇u) = h(x,u), Part II.
El Hachimi, Abderrahmane ; De Thélin, François
Publicacions Matemàtiques, Tome 35 (1991), p. 347-362 / Harvested from Biblioteca Digital de Matemáticas

In this paper we consider a nonlinear parabolic equation of the following type:

(P)      ∂u/∂t - div(|∇p|p-2 ∇u) = h(x,u)

with Dirichlet boundary conditions and initial data in the case when 1 < p < 2.

We construct supersolutions of (P), and by use of them, we prove that for tn → +∞, the solution of (P) converges to some solution of the elliptic equation associated with (P).

Publié le : 1991-01-01
DMLE-ID : 4192
@article{urn:eudml:doc:41696,
     title = {Supersolutions and stabilization of the solutions of the equation[?]u/[?]t - div(|[?]p|p-2 [?]u) = h(x,u), Part II.},
     journal = {Publicacions Matem\`atiques},
     volume = {35},
     year = {1991},
     pages = {347-362},
     mrnumber = {MR1201561},
     zbl = {0776.35027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41696}
}
El Hachimi, Abderrahmane; De Thélin, François. Supersolutions and stabilization of the solutions of the equation∂u/∂t - div(|∇p|p-2 ∇u) = h(x,u), Part II.. Publicacions Matemàtiques, Tome 35 (1991) pp. 347-362. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41696/