In this paper we consider a nonlinear parabolic equation of the following type:
(P) ∂u/∂t - div(|∇p|p-2 ∇u) = h(x,u)
with Dirichlet boundary conditions and initial data in the case when 1 < p < 2.
We construct supersolutions of (P), and by use of them, we prove that for tn → +∞, the solution of (P) converges to some solution of the elliptic equation associated with (P).
@article{urn:eudml:doc:41696, title = {Supersolutions and stabilization of the solutions of the equation[?]u/[?]t - div(|[?]p|p-2 [?]u) = h(x,u), Part II.}, journal = {Publicacions Matem\`atiques}, volume = {35}, year = {1991}, pages = {347-362}, mrnumber = {MR1201561}, zbl = {0776.35027}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41696} }
El Hachimi, Abderrahmane; De Thélin, François. Supersolutions and stabilization of the solutions of the equation∂u/∂t - div(|∇p|p-2 ∇u) = h(x,u), Part II.. Publicacions Matemàtiques, Tome 35 (1991) pp. 347-362. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41696/