The algebraic dimension of linear metric spaces and Baire properties of their hyperspaces.
Banakh, Taras ; Plichko, Anatolij
RACSAM, Tome 100 (2006), p. 31-37 / Harvested from Biblioteca Digital de Matemáticas

Answering a question of Halbeisen we prove (by two different methods) that the algebraic dimension of each infinite-dimensional complete linear metric space X equals the size of X. A topological method gives a bit more: the algebraic dimension of a linear metric space X equals |X| provided the hyperspace K(X) of compact subsets of X is a Baire space. Studying the interplay between Baire properties of a linear metric space X and its hyperspace, we construct a hereditarily Baire linear metric space X with meager hyperspace K(X). Also under (d = c) we construct a metrizable separable noncomplete linear metric space with hereditarily Baire hyperspace. We do not know if such a space can be constructed in ZFC.

Publié le : 2006-01-01
DMLE-ID : 4141
@article{urn:eudml:doc:41640,
     title = {The algebraic dimension of linear metric spaces and Baire properties of their hyperspaces.},
     journal = {RACSAM},
     volume = {100},
     year = {2006},
     pages = {31-37},
     mrnumber = {MR2267398},
     zbl = {1114.46002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41640}
}
Banakh, Taras; Plichko, Anatolij. The algebraic dimension of linear metric spaces and Baire properties of their hyperspaces.. RACSAM, Tome 100 (2006) pp. 31-37. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41640/