We solve, in two dimensions, the "square root problem of Kato". That is, for L ≡ -div (A(x)∇), where A(x) is a 2 x 2 accretive matrix of bounded measurable complex coefficients, we prove that L1/2: L1 2(R2) → L2(R2).
[Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial (Madrid), 2002].
@article{urn:eudml:doc:41610, title = {The solution of the Kato problem in two dimensions.}, journal = {Publicacions Matem\`atiques}, volume = {46}, year = {2002}, pages = {143-160}, zbl = {1020.47031}, mrnumber = {MR1964818}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41610} }
Hofmann, Steve; McIntosh, Alan. The solution of the Kato problem in two dimensions.. Publicacions Matemàtiques, Tome 46 (2002) pp. 143-160. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41610/