Let τ be an invertible skew pairing on (B,H) where B and H are Hopf algebras in a symmetric monoidal category C with (co)equalizers. Assume that H is quasitriangular. Then we obtain a new algebra structure such that B is a Hopf algebra in the braided category H HγD and there exists a Hopf algebra isomorphism w: B ∞ H → B [×]τ H in C, where B ∞ H is a Hopf algebra with (co)algebra structure the smash (co)product and B [×]τ H is the Hopf algebra defined by Doi and Takeuchi.
@article{urn:eudml:doc:41604, title = {Smash (co)products and skew pairings.}, journal = {Publicacions Matem\`atiques}, volume = {45}, year = {2001}, pages = {467-475}, mrnumber = {MR1876917}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41604} }
Alonso Alvarez, José N.; Fernández Vilaboa, José Manuel; González Rodríguez, Ramón. Smash (co)products and skew pairings.. Publicacions Matemàtiques, Tome 45 (2001) pp. 467-475. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41604/