In this paper we show that to check Gromov hyperbolicity of any surface of constant negative curvature, or Riemann surface, we only need to verify the Rips condition on a very small class of triangles, namely, those obtained by marking three points in a simple closed geodesic. This result is, in fact, a new characterization of Gromov hyperbolicity for Riemann surfaces.
@article{urn:eudml:doc:41587, title = {A new characterization of Gromov hyperbolicity for negatively curved surfaces.}, journal = {Publicacions Matem\`atiques}, volume = {50}, year = {2006}, pages = {249-278}, zbl = {1111.53033}, mrnumber = {MR2273661}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41587} }
Rodríguez, José M.; Tourís, Eva. A new characterization of Gromov hyperbolicity for negatively curved surfaces.. Publicacions Matemàtiques, Tome 50 (2006) pp. 249-278. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41587/