In this paper we show that to check Gromov hyperbolicity of any surface of constant negative curvature, or Riemann surface, we only need to verify the Rips condition on a very small class of triangles, namely, those obtained by marking three points in a simple closed geodesic. This result is, in fact, a new characterization of Gromov hyperbolicity for Riemann surfaces.
@article{urn:eudml:doc:41587,
title = {A new characterization of Gromov hyperbolicity for negatively curved surfaces.},
journal = {Publicacions Matem\`atiques},
volume = {50},
year = {2006},
pages = {249-278},
zbl = {1111.53033},
mrnumber = {MR2273661},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41587}
}
Rodríguez, José M.; Tourís, Eva. A new characterization of Gromov hyperbolicity for negatively curved surfaces.. Publicacions Matemàtiques, Tome 50 (2006) pp. 249-278. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41587/