A new characterization of Gromov hyperbolicity for negatively curved surfaces.
Rodríguez, José M. ; Tourís, Eva
Publicacions Matemàtiques, Tome 50 (2006), p. 249-278 / Harvested from Biblioteca Digital de Matemáticas

In this paper we show that to check Gromov hyperbolicity of any surface of constant negative curvature, or Riemann surface, we only need to verify the Rips condition on a very small class of triangles, namely, those obtained by marking three points in a simple closed geodesic. This result is, in fact, a new characterization of Gromov hyperbolicity for Riemann surfaces.

Publié le : 2006-01-01
DMLE-ID : 4092
@article{urn:eudml:doc:41587,
     title = {A new characterization of Gromov hyperbolicity for negatively curved surfaces.},
     journal = {Publicacions Matem\`atiques},
     volume = {50},
     year = {2006},
     pages = {249-278},
     zbl = {1111.53033},
     mrnumber = {MR2273661},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41587}
}
Rodríguez, José M.; Tourís, Eva. A new characterization of Gromov hyperbolicity for negatively curved surfaces.. Publicacions Matemàtiques, Tome 50 (2006) pp. 249-278. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41587/