The central theme running through our investigation is the infinity-Laplacian operator in the plane. Upon multiplication by a suitable function we express it in divergence form, this allows us to speak of weak infinity-harmonic function in W1,2. To every infinity-harmonic function u we associate its conjugate function v. We focus our attention to the first order Beltrami type equation for h= u + iv
@article{urn:eudml:doc:41586, title = {Divergence forms of the infinity-Laplacian.}, journal = {Publicacions Matem\`atiques}, volume = {50}, year = {2006}, pages = {229-248}, zbl = {05207316}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41586} }
D'Onofrio, Luigi; Giannetti, Flavia; Iwaniec, Tadeusz; Manfredi, Juan; Radice, Teresa. Divergence forms of the infinity-Laplacian.. Publicacions Matemàtiques, Tome 50 (2006) pp. 229-248. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41586/