We show the Tychonoff's theorem for a Grothendieck category with a set of small projective generators. Strictly quasi-finite objects for semiartinian Grothendieck categories are characterized. We apply these results to the study of the Morita duality of dual algebra of a coalgebra.
@article{urn:eudml:doc:41582, title = {Topological linear compactness for Grothendieck categories. Theorem of Tychonoff. Applications to coalgebras.}, journal = {Publicacions Matem\`atiques}, volume = {50}, year = {2006}, pages = {57-70}, zbl = {1145.18003}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41582} }
Enache, P.; Nastasescu, C.; Torrecillas, B. Topological linear compactness for Grothendieck categories. Theorem of Tychonoff. Applications to coalgebras.. Publicacions Matemàtiques, Tome 50 (2006) pp. 57-70. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41582/