We show the Tychonoff's theorem for a Grothendieck category with a set of small projective generators. Strictly quasi-finite objects for semiartinian Grothendieck categories are characterized. We apply these results to the study of the Morita duality of dual algebra of a coalgebra.
@article{urn:eudml:doc:41582,
title = {Topological linear compactness for Grothendieck categories. Theorem of Tychonoff. Applications to coalgebras.},
journal = {Publicacions Matem\`atiques},
volume = {50},
year = {2006},
pages = {57-70},
zbl = {1145.18003},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41582}
}
Enache, P.; Nastasescu, C.; Torrecillas, B. Topological linear compactness for Grothendieck categories. Theorem of Tychonoff. Applications to coalgebras.. Publicacions Matemàtiques, Tome 50 (2006) pp. 57-70. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41582/