Let Y be a Riemann surface with compact boundary embedded into a hyperbolic Riemann surface of finite type X. It is proved that the space of deformations D of Y into X is an open subset of the Teichmüller space T(X) of X. Furthermore, D has compact closure if and only if Y is simply connected or isomorphic to a punctured disk, and D= T(X) if and only if the components of X Y are all disks or punctured disks.
@article{urn:eudml:doc:41563, title = {D\'eformation localis\'ee de surfaces de Riemann.}, journal = {Publicacions Matem\`atiques}, volume = {49}, year = {2005}, pages = {249-255}, zbl = {1071.30042}, language = {fr}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41563} }
Haïssinsky, Peter. Déformation localisée de surfaces de Riemann.. Publicacions Matemàtiques, Tome 49 (2005) pp. 249-255. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41563/