Let Y be a Riemann surface with compact boundary embedded into a hyperbolic Riemann surface of finite type X. It is proved that the space of deformations D of Y into X is an open subset of the Teichmüller space T(X) of X. Furthermore, D has compact closure if and only if Y is simply connected or isomorphic to a punctured disk, and D= T(X) if and only if the components of X Y are all disks or punctured disks.
@article{urn:eudml:doc:41563,
title = {D\'eformation localis\'ee de surfaces de Riemann.},
journal = {Publicacions Matem\`atiques},
volume = {49},
year = {2005},
pages = {249-255},
zbl = {1071.30042},
language = {fr},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41563}
}
Haïssinsky, Peter. Déformation localisée de surfaces de Riemann.. Publicacions Matemàtiques, Tome 49 (2005) pp. 249-255. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41563/