We present a geometric proof of the Poincaré-Dulac Normalization Theorem for analytic vector fields with singularities of Poincaré type. Our approach allows us to relate the size of the convergence domain of the linearizing transformation to the geometry of the complex foliation associated to the vector field.
@article{urn:eudml:doc:41559, title = {Normalization of Poincar\'e singularities via variation of constants.}, journal = {Publicacions Matem\`atiques}, volume = {49}, year = {2005}, pages = {197-212}, zbl = {1130.37010}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41559} }
Carletti, Timoteo; Margheri, Alessandro; Villarin, Massimo. Normalization of Poincaré singularities via variation of constants.. Publicacions Matemàtiques, Tome 49 (2005) pp. 197-212. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41559/