This paper deals with the following problem:
Let T be a given operator. Find conditions on v(x) (resp. u(x)) such that
∫ |Tf(x)|pu(x) dx ≤ C ∫ |f(x)|pv(x) dx
is satisfied for some u(x) (resp. v(x)).
Using vector-valued inequalities the problem is solved for: Carleson's maximal operator of Fourier partial sums, Littlewood-Paley square functions, Hilbert transform of functions valued in U.M.D. Banach spaces and operators in the upper-half plane.
@article{urn:eudml:doc:41532, title = {Vector-valued inequalities with weights.}, journal = {Publicacions Matem\`atiques}, volume = {37}, year = {1993}, pages = {177-208}, mrnumber = {MR1240931}, zbl = {0798.42007}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41532} }
Fernández-Cabrera, Luz M.; Torrea, José L. Vector-valued inequalities with weights.. Publicacions Matemàtiques, Tome 37 (1993) pp. 177-208. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41532/