We extend to locally compact abelian groups, Fejer's theorem on pointwise convergence of the Fourier transform. We prove that lim φU * f(y) = f (y) almost everywhere for any function f in the space (LP, l∞)(G) (hence in LP(G)), 2 ≤ p ≤ ∞, where {φU} is Simon's generalization to locally compact abelian groups of the summability Fejer Kernel. Using this result, we extend to locally compact abelian groups a theorem of F. Holland on the Fourier transform of unbounded measures of type q.
@article{urn:eudml:doc:41524, title = {Pointwise convergence of the Fourier transform on locally compact abelian groups.}, journal = {Publicacions Matem\`atiques}, volume = {37}, year = {1993}, pages = {45-55}, mrnumber = {MR1240921}, zbl = {0817.43001}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41524} }
Torres de Squire, María L. Pointwise convergence of the Fourier transform on locally compact abelian groups.. Publicacions Matemàtiques, Tome 37 (1993) pp. 45-55. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41524/