We present here three examples concerning polynomial hulls of some manifolds in C2.
1. Some real surfaces with equation w = P (z,z') + G(z) where P is a homogeneous polynomial of degree n and G(z) = o(|z|n) at 0 which are locally polynomially convex at 0.
2. Some real surfaces MF with equation w = zn+kz'n + F(z,z') such that the hull of Mf ∩ B'(0,1) contains a neighbourhood of 0.
3. A contable union of totally real planes (Pj) such that B'(0,1) ∩ (∪j∈N Pj) is polynomially convex.
@article{urn:eudml:doc:41513,
title = {Enveloppes polynomiales de vari\'et\'es r\'eelles dans C2.},
journal = {Publicacions Matem\`atiques},
volume = {37},
year = {1993},
pages = {225-238},
mrnumber = {MR1240933},
zbl = {0801.32004},
language = {fr},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41513}
}
Gourlay, Boris. Enveloppes polynomiales de variétés réelles dans C2.. Publicacions Matemàtiques, Tome 37 (1993) pp. 225-238. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41513/