We present here three examples concerning polynomial hulls of some manifolds in C2.
1. Some real surfaces with equation w = P (z,z') + G(z) where P is a homogeneous polynomial of degree n and G(z) = o(|z|n) at 0 which are locally polynomially convex at 0.
2. Some real surfaces MF with equation w = zn+kz'n + F(z,z') such that the hull of Mf ∩ B'(0,1) contains a neighbourhood of 0.
3. A contable union of totally real planes (Pj) such that B'(0,1) ∩ (∪j∈N Pj) is polynomially convex.
@article{urn:eudml:doc:41513, title = {Enveloppes polynomiales de vari\'et\'es r\'eelles dans C2.}, journal = {Publicacions Matem\`atiques}, volume = {37}, year = {1993}, pages = {225-238}, mrnumber = {MR1240933}, zbl = {0801.32004}, language = {fr}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41513} }
Gourlay, Boris. Enveloppes polynomiales de variétés réelles dans C2.. Publicacions Matemàtiques, Tome 37 (1993) pp. 225-238. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41513/