In this article, we consider the set F of functions annihilated by a uniformly elliptic system S in an open set Ω of Rn.
We show that, as in the case of harmonic functions, F satisfies a submean-property, first for p=2 by elliptic estimates, then for all p > 0:
|∇k u(x)|p ≤ C / (rn+kp) ∫B(x,r) |u(y)|p dy
for each u in F, each k > 0 and every ball B(x,r) included in Ω.
As a consequence, we can compare ||u||Lp(Ω) and ||∇ku||Lp(Ω,δkp) where δ is the distance to the boundary of Ω, under the hypothesis that S has constant coefficients or satisfies S(1) = 0.
We conclude that, with the metric ||u||Lp(Ω) + ||∇u||Lp(Ω) we have a compacity property of the ball of F for all p > 0.
@article{urn:eudml:doc:41510, title = {Propri\'et\'es de moyenne pour les solutions de syst\`emes elliptiques}, journal = {Publicacions Matem\`atiques}, volume = {37}, year = {1993}, pages = {83-89}, mrnumber = {MR1240924}, zbl = {0792.35046}, language = {fr}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41510} }
Détraz, Jacqueline. Propriétés de moyenne pour les solutions de systèmes elliptiques. Publicacions Matemàtiques, Tome 37 (1993) pp. 83-89. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41510/