L2 boundedness of the Cauchy transform implies L2 boundedness of all Calderón-Zygmund operators associated to odd kernels.
Tolsa, Xavier
Publicacions Matemàtiques, Tome 48 (2004), p. 445-479 / Harvested from Biblioteca Digital de Matemáticas

Let m be a Radon measure on C without atoms. In this paper we prove that if the Cauchy transform is bounded in L2(m), then all 1-dimensional Calderón-Zygmund operators associated to odd and sufficiently smooth kernels are also bounded in L2(m).

Publié le : 2004-01-01
DMLE-ID : 4019
@article{urn:eudml:doc:41506,
     title = {L2 boundedness of the Cauchy transform implies L2 boundedness of all Calder\'on-Zygmund operators associated to odd kernels.},
     journal = {Publicacions Matem\`atiques},
     volume = {48},
     year = {2004},
     pages = {445-479},
     zbl = {1066.42013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41506}
}
Tolsa, Xavier. L2 boundedness of the Cauchy transform implies L2 boundedness of all Calderón-Zygmund operators associated to odd kernels.. Publicacions Matemàtiques, Tome 48 (2004) pp. 445-479. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41506/