Let m be a Radon measure on C without atoms. In this paper we prove that if the Cauchy transform is bounded in L2(m), then all 1-dimensional Calderón-Zygmund operators associated to odd and sufficiently smooth kernels are also bounded in L2(m).
@article{urn:eudml:doc:41506, title = {L2 boundedness of the Cauchy transform implies L2 boundedness of all Calder\'on-Zygmund operators associated to odd kernels.}, journal = {Publicacions Matem\`atiques}, volume = {48}, year = {2004}, pages = {445-479}, zbl = {1066.42013}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41506} }
Tolsa, Xavier. L2 boundedness of the Cauchy transform implies L2 boundedness of all Calderón-Zygmund operators associated to odd kernels.. Publicacions Matemàtiques, Tome 48 (2004) pp. 445-479. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41506/