We study Lebesgue points for Sobolev functions over other collections of sets than balls. Our main result gives several conditions for a differentiation basis, which characterize the existence of Lebesgue points outside a set of capacity zero.
@article{urn:eudml:doc:41501,
title = {Differentiation bases for Sobolev functions on metric spaces.},
journal = {Publicacions Matem\`atiques},
volume = {48},
year = {2004},
pages = {381-395},
zbl = {1074.46023},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41501}
}
Harjulehto, Petteri; Kinnunen, Juha. Differentiation bases for Sobolev functions on metric spaces.. Publicacions Matemàtiques, Tome 48 (2004) pp. 381-395. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41501/