We study Lebesgue points for Sobolev functions over other collections of sets than balls. Our main result gives several conditions for a differentiation basis, which characterize the existence of Lebesgue points outside a set of capacity zero.
@article{urn:eudml:doc:41501, title = {Differentiation bases for Sobolev functions on metric spaces.}, journal = {Publicacions Matem\`atiques}, volume = {48}, year = {2004}, pages = {381-395}, zbl = {1074.46023}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41501} }
Harjulehto, Petteri; Kinnunen, Juha. Differentiation bases for Sobolev functions on metric spaces.. Publicacions Matemàtiques, Tome 48 (2004) pp. 381-395. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41501/