Counting fixed points of a finitely generated subgroup of Aff [C].
Loray, F. ; Van Der Put, M. ; Recher, F.
Publicacions Matemàtiques, Tome 48 (2004), p. 127-137 / Harvested from Biblioteca Digital de Matemáticas

Given a finitely generated subgroup G of the group of affine transformations acting on the complex line C, we are interested in the quotient Fix( G)/G. The purpose of this note is to establish when this quotient is finite and in this case its cardinality. We give an application to the qualitative study of polynomial planar vector fields at a neighborhood of a nilpotent singular point.

Publié le : 2004-01-01
DMLE-ID : 4007
@article{urn:eudml:doc:41493,
     title = {Counting fixed points of a finitely generated subgroup of Aff [C].},
     journal = {Publicacions Matem\`atiques},
     volume = {48},
     year = {2004},
     pages = {127-137},
     zbl = {1122.37038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41493}
}
Loray, F.; Van Der Put, M.; Recher, F. Counting fixed points of a finitely generated subgroup of Aff [C].. Publicacions Matemàtiques, Tome 48 (2004) pp. 127-137. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41493/