Extending recent work for the linear Poisson problem for the Laplacian in the framework of Sobolev-Besov spaces on Lipschitz domains by Jerison and Kenig [16], Fabes, Mendez and Mitrea [9], and Mitrea and Taylor [30], here we take up the task of developing a similar sharp theory for semilinear problems of the type Δu - N(x,u) = F(x), equipped with Dirichlet and Neumann boundary conditions.
@article{urn:eudml:doc:41457, title = {Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains.}, journal = {Publicacions Matem\`atiques}, volume = {46}, year = {2002}, pages = {353-403}, mrnumber = {MR1934200}, zbl = {1058.35073}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41457} }
Dindos, Martin; Mitrea, Marius. Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains.. Publicacions Matemàtiques, Tome 46 (2002) pp. 353-403. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41457/