Extending recent work for the linear Poisson problem for the Laplacian in the framework of Sobolev-Besov spaces on Lipschitz domains by Jerison and Kenig [16], Fabes, Mendez and Mitrea [9], and Mitrea and Taylor [30], here we take up the task of developing a similar sharp theory for semilinear problems of the type Δu - N(x,u) = F(x), equipped with Dirichlet and Neumann boundary conditions.
@article{urn:eudml:doc:41457,
title = {Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains.},
journal = {Publicacions Matem\`atiques},
volume = {46},
year = {2002},
pages = {353-403},
mrnumber = {MR1934200},
zbl = {1058.35073},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41457}
}
Dindos, Martin; Mitrea, Marius. Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains.. Publicacions Matemàtiques, Tome 46 (2002) pp. 353-403. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41457/