When is each proper overring of R an S(Eidenberg)-domain?
Jarboui, Noômen
Publicacions Matemàtiques, Tome 46 (2002), p. 435-440 / Harvested from Biblioteca Digital de Matemáticas

A domain R is called a maximal "non-S" subring of a field L if R ⊂ L, R is not an S-domain and each domain T such that R ⊂ T ⊆ L is an S-domain. We show that maximal "non-S" subrings R of a field L are the integrally closed pseudo-valuation domains satisfying dim(R) = 1, dimv(R) = 2 and L = qf(R).

Publié le : 2002-01-01
DMLE-ID : 3975
@article{urn:eudml:doc:41456,
     title = {When is each proper overring of R an S(Eidenberg)-domain?},
     journal = {Publicacions Matem\`atiques},
     volume = {46},
     year = {2002},
     pages = {435-440},
     mrnumber = {MR1934362},
     zbl = {1086.13504},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41456}
}
Jarboui, Noômen. When is each proper overring of R an S(Eidenberg)-domain?. Publicacions Matemàtiques, Tome 46 (2002) pp. 435-440. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41456/