In this paper we study the Sobolev trace embedding W1,p(Ω) → Lp V (∂Ω), where V is an indefinite weight. This embedding leads to a nonlinear eigenvalue problem where the eigenvalue appears at the (nonlinear) boundary condition. We prove that there exists a sequence of variational eigenvalues λk / +∞ and then show that the first eigenvalue is isolated, simple and monotone with respect to the weight. Then we prove a nonexistence result related to the first eigenvalue and we end this article with the study of the second eigenvalue proving that it coincides with the second variational eigenvalue.
@article{urn:eudml:doc:41452, title = {A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding.}, journal = {Publicacions Matem\`atiques}, volume = {46}, year = {2002}, pages = {221-235}, mrnumber = {MR1904864}, zbl = {1014.35070}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41452} }
Fernández Bonder, Julián; Rossi, Julio D. A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding.. Publicacions Matemàtiques, Tome 46 (2002) pp. 221-235. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41452/