Let φ: R → [0,∞) an integrable function such that φχ(-∞,0) = 0 and φ is decreasing in (0,∞). Let τhf(x) = f(x-h), with h ∈ R {0} and fR(x) = 1/R f(x/R), with R > 0. In this paper we characterize the pair of weights (u, v) such that the operators Mτhφf(x) = supR>0|f| * [τhφ]R(x) are of weak type (p, p) with respect to (u, v), 1 < p < ∞.
@article{urn:eudml:doc:41446, title = {Two weighted inequalities for convolution maximal operators.}, journal = {Publicacions Matem\`atiques}, volume = {46}, year = {2002}, pages = {119-138}, mrnumber = {MR1904859}, zbl = {1013.42013}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41446} }
Bernardis, Ana Lucía; Martín-Reyes, Francisco Javier. Two weighted inequalities for convolution maximal operators.. Publicacions Matemàtiques, Tome 46 (2002) pp. 119-138. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41446/