Two weighted inequalities for convolution maximal operators.
Bernardis, Ana Lucía ; Martín-Reyes, Francisco Javier
Publicacions Matemàtiques, Tome 46 (2002), p. 119-138 / Harvested from Biblioteca Digital de Matemáticas

Let φ: R → [0,∞) an integrable function such that φχ(-∞,0) = 0 and φ is decreasing in (0,∞). Let τhf(x) = f(x-h), with h ∈ R {0} and fR(x) = 1/R f(x/R), with R > 0. In this paper we characterize the pair of weights (u, v) such that the operators Mτhφf(x) = supR>0|f| * [τhφ]R(x) are of weak type (p, p) with respect to (u, v), 1 < p < ∞.

Publié le : 2002-01-01
DMLE-ID : 3966
@article{urn:eudml:doc:41446,
     title = {Two weighted inequalities for convolution maximal operators.},
     journal = {Publicacions Matem\`atiques},
     volume = {46},
     year = {2002},
     pages = {119-138},
     mrnumber = {MR1904859},
     zbl = {1013.42013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41446}
}
Bernardis, Ana Lucía; Martín-Reyes, Francisco Javier. Two weighted inequalities for convolution maximal operators.. Publicacions Matemàtiques, Tome 46 (2002) pp. 119-138. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41446/