Perfect rings for which the converse of Schur's lemma holds.
Haily, Abdelfattah ; Alaoui, Mostafa
Publicacions Matemàtiques, Tome 45 (2001), p. 219-222 / Harvested from Biblioteca Digital de Matemáticas

If M is a simple module over a ring R then, by the Schur's lemma, the endomorphism ring of M is a division ring. However, the converse of this result does not hold in general, even when R is artinian. In this short note, we consider perfect rings for which the converse assertion is true, and we show that these rings are exactly the primary decomposable ones.

Publié le : 2001-01-01
DMLE-ID : 3948
@article{urn:eudml:doc:41426,
     title = {Perfect rings for which the converse of Schur's lemma holds.},
     journal = {Publicacions Matem\`atiques},
     volume = {45},
     year = {2001},
     pages = {219-222},
     mrnumber = {MR1829585},
     zbl = {0982.16003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41426}
}
Haily, Abdelfattah; Alaoui, Mostafa. Perfect rings for which the converse of Schur's lemma holds.. Publicacions Matemàtiques, Tome 45 (2001) pp. 219-222. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41426/