We show that a certain solution operator for ∂ in a space of forms square integrable against e-|z|2 is canonical, i.e., that it gives the minimal solution when applied to a ∂-closed form, and gives zero when applied to a form orthogonal to Ker ∂.
As an application, we construct a canonical homotopy operator for i∂∂.
@article{urn:eudml:doc:41423, title = {On canonical homotopy operators for $\partial$ in Fock type spaces in Cn.}, journal = {Publicacions Matem\`atiques}, volume = {45}, year = {2001}, pages = {223-233}, mrnumber = {MR1829586}, zbl = {0997.32036}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41423} }
Boo, Jörgen. On canonical homotopy operators for ∂ in Fock type spaces in Cn.. Publicacions Matemàtiques, Tome 45 (2001) pp. 223-233. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41423/