We derive conditions under which a holomorphic mapping of a taut Riemann surface must be an automorphism. This is an analogue involving invariant distances of a result of H. Cartan. Using similar methods we prove an existence result for 1-dimensional holomorphic retracts in a taut complex manifold.
@article{urn:eudml:doc:41422, title = {A Cartan-type result for invariant distances and one-dimensional holomorphic retracts.}, journal = {Publicacions Matem\`atiques}, volume = {45}, year = {2001}, pages = {387-397}, mrnumber = {MR1876913}, zbl = {0999.32005}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41422} }
Watt, Colum. A Cartan-type result for invariant distances and one-dimensional holomorphic retracts.. Publicacions Matemàtiques, Tome 45 (2001) pp. 387-397. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41422/