Let F : U ⊂ Rn → Rm be a differentiable function and p < m an integer. If k ≥ 1 is an integer, α ∈ [0, 1] and F ∈ Ck+(α), if we set Cp(F) = {x ∈ U | rank(Df(x)) ≤ p} then the Hausdorff measure of dimension (p + (n-p)/(k+α)) of F(Cp(F)) is zero.
@article{urn:eudml:doc:41419,
title = {Hausdorff measures and the Morse-Sard theorem.},
journal = {Publicacions Matem\`atiques},
volume = {45},
year = {2001},
pages = {149-162},
mrnumber = {MR1829581},
zbl = {0995.58007},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41419}
}
Moreira, Carlos Gustavo T. de A. Hausdorff measures and the Morse-Sard theorem.. Publicacions Matemàtiques, Tome 45 (2001) pp. 149-162. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41419/