We study the regularity problem for Cauchy Riemann maps between hypersurfaces in Cn. We prove that a continuous Cauchy Riemann map between two smooth C∞ pseudoconvex decoupled hypersurfaces of finite D'Angelo type is of class C∞.
@article{urn:eudml:doc:41415, title = {Smoothness of Cauchy Riemann maps for a class of real hypersurfaces.}, journal = {Publicacions Matem\`atiques}, volume = {45}, year = {2001}, pages = {79-94}, mrnumber = {MR1829578}, zbl = {1040.32030}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41415} }
Gaussier, Hervé. Smoothness of Cauchy Riemann maps for a class of real hypersurfaces.. Publicacions Matemàtiques, Tome 45 (2001) pp. 79-94. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41415/