We study the regularity problem for Cauchy Riemann maps between hypersurfaces in Cn. We prove that a continuous Cauchy Riemann map between two smooth C∞ pseudoconvex decoupled hypersurfaces of finite D'Angelo type is of class C∞.
@article{urn:eudml:doc:41415,
title = {Smoothness of Cauchy Riemann maps for a class of real hypersurfaces.},
journal = {Publicacions Matem\`atiques},
volume = {45},
year = {2001},
pages = {79-94},
mrnumber = {MR1829578},
zbl = {1040.32030},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41415}
}
Gaussier, Hervé. Smoothness of Cauchy Riemann maps for a class of real hypersurfaces.. Publicacions Matemàtiques, Tome 45 (2001) pp. 79-94. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41415/