We study the existence of global canard surfaces for a wide class of real singular perturbation problems. These surfaces define families of solutions which remain near the slow curve as the singular parameter goes to zero.
@article{urn:eudml:doc:41408, title = {On the existence of canard solutions}, journal = {Publicacions Matem\`atiques}, volume = {44}, year = {2000}, pages = {503-592}, mrnumber = {MR1800821}, zbl = {0982.34050}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41408} }
Panazzolo, Daniel. On the existence of canard solutions. Publicacions Matemàtiques, Tome 44 (2000) pp. 503-592. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41408/