We study the existence of global canard surfaces for a wide class of real singular perturbation problems. These surfaces define families of solutions which remain near the slow curve as the singular parameter goes to zero.
@article{urn:eudml:doc:41408,
title = {On the existence of canard solutions},
journal = {Publicacions Matem\`atiques},
volume = {44},
year = {2000},
pages = {503-592},
mrnumber = {MR1800821},
zbl = {0982.34050},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41408}
}
Panazzolo, Daniel. On the existence of canard solutions. Publicacions Matemàtiques, Tome 44 (2000) pp. 503-592. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41408/