Let ZA be the integral group ring of a finite abelian group A, and n a positive integer greater than 5. We provide conditions on n and A under which every torsion matrix U, with identity augmentation, in GLn(ZA) is conjugate in GLn(QA) to a diagonal matrix with group elements on the diagonal. When A is infinite, we show that under similar conditions, U has a group trace and is stably conjugate to such a diagonal matrix.
@article{urn:eudml:doc:41403, title = {Torsion matrices over commutative integral group rings.}, journal = {Publicacions Matem\`atiques}, volume = {44}, year = {2000}, pages = {359-367}, mrnumber = {MR1800813}, zbl = {0979.20006}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41403} }
Lee, Gregory T.; Sehgal, Sudarshan K. Torsion matrices over commutative integral group rings.. Publicacions Matemàtiques, Tome 44 (2000) pp. 359-367. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41403/