Torsion matrices over commutative integral group rings.
Lee, Gregory T. ; Sehgal, Sudarshan K.
Publicacions Matemàtiques, Tome 44 (2000), p. 359-367 / Harvested from Biblioteca Digital de Matemáticas

Let ZA be the integral group ring of a finite abelian group A, and n a positive integer greater than 5. We provide conditions on n and A under which every torsion matrix U, with identity augmentation, in GLn(ZA) is conjugate in GLn(QA) to a diagonal matrix with group elements on the diagonal. When A is infinite, we show that under similar conditions, U has a group trace and is stably conjugate to such a diagonal matrix.

Publié le : 2000-01-01
DMLE-ID : 3927
@article{urn:eudml:doc:41403,
     title = {Torsion matrices over commutative integral group rings.},
     journal = {Publicacions Matem\`atiques},
     volume = {44},
     year = {2000},
     pages = {359-367},
     mrnumber = {MR1800813},
     zbl = {0979.20006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41403}
}
Lee, Gregory T.; Sehgal, Sudarshan K. Torsion matrices over commutative integral group rings.. Publicacions Matemàtiques, Tome 44 (2000) pp. 359-367. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41403/