Existence and uniqueness of periodic solutions for a nonlinear reaction-diffusion problem.
Badii, Maurizio
Publicacions Matemàtiques, Tome 44 (2000), p. 295-307 / Harvested from Biblioteca Digital de Matemáticas

We consider a class of degenerate reaction-diffusion equations on a bounded domain with nonlinear flux on the boundary. These problems arise in the mathematical modelling of flow through porous media. We prove, under appropriate hypothesis, the existence and uniqueness of the nonnegative weak periodic solution. To establish our result, we use the Schauder fixed point theorem and some regularizing arguments.

Publié le : 2000-01-01
DMLE-ID : 3919
@article{urn:eudml:doc:41394,
     title = {Existence and uniqueness of periodic solutions for a nonlinear reaction-diffusion problem.},
     journal = {Publicacions Matem\`atiques},
     volume = {44},
     year = {2000},
     pages = {295-307},
     mrnumber = {MR1775766},
     zbl = {1010.35062},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41394}
}
Badii, Maurizio. Existence and uniqueness of periodic solutions for a nonlinear reaction-diffusion problem.. Publicacions Matemàtiques, Tome 44 (2000) pp. 295-307. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41394/