Homogenous Banach spaces on the unit circle.
Pedersen, Thomas Vils
Publicacions Matemàtiques, Tome 44 (2000), p. 135-155 / Harvested from Biblioteca Digital de Matemáticas

We prove that a homogeneous Banach space B on the unit circle T can be embedded as a closed subspace of a dual space Ξ*B contained in the space of bounded Borel measures on T in such a way that the map B → Ξ*B defines a bijective correspondence between the class of homogeneous Banach spaces on T and the class of prehomogeneous Banach spaces on T.

We apply our results to show that the algebra of all continuous functions on T is the only homogeneous Banach algebra on T in which every closed ideal has a bounded approximate identity with a common bound, and that the space of multipliers between two homogeneous Banach spaces is a dual space. Finally, we describe the space Ξ*B for some examples of homogeneous Banach spaces B on T.

Publié le : 2000-01-01
DMLE-ID : 3911
@article{urn:eudml:doc:41386,
     title = {Homogenous Banach spaces on the unit circle.},
     journal = {Publicacions Matem\`atiques},
     volume = {44},
     year = {2000},
     pages = {135-155},
     mrnumber = {MR1775745},
     zbl = {0962.46015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41386}
}
Pedersen, Thomas Vils. Homogenous Banach spaces on the unit circle.. Publicacions Matemàtiques, Tome 44 (2000) pp. 135-155. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41386/