In this note we give some summability results for entropy solutions of the nonlinear parabolic equation ut - div ap (x, ∇u) = f in ] 0,T [xΩ with initial datum in L1(Ω) and assuming Dirichlet's boundary condition, where ap(.,.) is a Carathéodory function satisfying the classical Leray-Lions hypotheses, f ∈ L1 (]0,T[xΩ) and Ω is a domain in RN. We find spaces of type Lr(0,T;Mq(Ω)) containing the entropy solution and its gradient. We also include some summability results when f = 0 and the p-Laplacian equation is considered.
@article{urn:eudml:doc:41380, title = {Regularity for entropy solutions of parabolic p-Laplacian type equations.}, journal = {Publicacions Matem\`atiques}, volume = {43}, year = {1999}, pages = {665-683}, mrnumber = {MR1744624}, zbl = {0962.35108}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41380} }
Segura de León, Sergio; Toledo, José. Regularity for entropy solutions of parabolic p-Laplacian type equations.. Publicacions Matemàtiques, Tome 43 (1999) pp. 665-683. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41380/