Almost everywhere convergence and boundedness of Cesàro-α ergodic averages in Lp,q-spaces.
Martín Reyes, Francisco J. ; Sarrión Gavilán, María Dolores
Publicacions Matemàtiques, Tome 43 (1999), p. 217-234 / Harvested from Biblioteca Digital de Matemáticas

Let (X, μ) be a σ-finite measure space and let τ be an ergodic invertible measure preserving transformation. We study the a.e. convergence of the Cesàro-α ergodic averages associated with τ and the boundedness of the corresponding maximal operator in the setting of Lp,q(wdμ) spaces.

Publié le : 1999-01-01
DMLE-ID : 3891
@article{urn:eudml:doc:41363,
     title = {Almost everywhere convergence and boundedness of Ces\`aro-$\alpha$ ergodic averages in Lp,q-spaces.},
     journal = {Publicacions Matem\`atiques},
     volume = {43},
     year = {1999},
     pages = {217-234},
     mrnumber = {MR1697522},
     zbl = {1029.47500},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41363}
}
Martín Reyes, Francisco J.; Sarrión Gavilán, María Dolores. Almost everywhere convergence and boundedness of Cesàro-α ergodic averages in Lp,q-spaces.. Publicacions Matemàtiques, Tome 43 (1999) pp. 217-234. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41363/