Let (X, μ) be a σ-finite measure space and let τ be an ergodic invertible measure preserving transformation. We study the a.e. convergence of the Cesàro-α ergodic averages associated with τ and the boundedness of the corresponding maximal operator in the setting of Lp,q(wdμ) spaces.
@article{urn:eudml:doc:41363, title = {Almost everywhere convergence and boundedness of Ces\`aro-$\alpha$ ergodic averages in Lp,q-spaces.}, journal = {Publicacions Matem\`atiques}, volume = {43}, year = {1999}, pages = {217-234}, mrnumber = {MR1697522}, zbl = {1029.47500}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41363} }
Martín Reyes, Francisco J.; Sarrión Gavilán, María Dolores. Almost everywhere convergence and boundedness of Cesàro-α ergodic averages in Lp,q-spaces.. Publicacions Matemàtiques, Tome 43 (1999) pp. 217-234. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41363/