We define a stochastic anticipating integral δμ with respect to Brownian motion, associated to a non adapted increasing process (μt), with dual projection t. The integral δμ(u) of an anticipating process (ut) satisfies: for every bounded predictable process ft,
E [ (∫ fsdBs ) δμ(u) ] = E [ ∫ fsusdμs ].
We characterize this integral when μt = supt ≤s ≤ 1 Bs. The proof relies on a path decomposition of Brownian motion up to time 1.
@article{urn:eudml:doc:41359, title = {Int\'egrales stochastiques de processus anticipants et projections duales pr\'evisibles.}, journal = {Publicacions Matem\`atiques}, volume = {43}, year = {1999}, pages = {281-301}, mrnumber = {MR1697526}, zbl = {0936.60051}, language = {fr}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41359} }
Donati-Martin, Catherine; Yor, Marc. Intégrales stochastiques de processus anticipants et projections duales prévisibles.. Publicacions Matemàtiques, Tome 43 (1999) pp. 281-301. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41359/