We consider the diophantine equation
(*) xp - x = yq - y
in integers (x, p, y, q). We prove that for given p and q with 2 ≤ p < q, (*) has only finitely many solutions. Assuming the abc-conjecture we can prove that p and q are bounded. In the special case p = 2 and y a prime power we are able to solve (*) completely.
@article{urn:eudml:doc:41357, title = {On the diophantine equation xp - x = yq - y.}, journal = {Publicacions Matem\`atiques}, volume = {43}, year = {1999}, pages = {207-216}, mrnumber = {MR1697521}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41357} }
Mignotte, Maurice; Petho, Attila. On the diophantine equation xp - x = yq - y.. Publicacions Matemàtiques, Tome 43 (1999) pp. 207-216. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41357/