Foliations in algebraic surfaces having a rational first integral.
García Zamora, Alexis
Publicacions Matemàtiques, Tome 41 (1997), p. 357-373 / Harvested from Biblioteca Digital de Matemáticas

Given a foliation F in an algebraic surface having a rational first integral a genus formula for the general solution is obtained. In the case S = P2 some new counter-examples to the classic formulation of the Poincaré problem are presented. If S is a rational surface and F has singularities of type (1, 1) or (1,-1) we prove that the general solution is a non-singular curve.

Publié le : 1997-01-01
DMLE-ID : 3853
@article{urn:eudml:doc:41321,
     title = {Foliations in algebraic surfaces having a rational first integral.},
     journal = {Publicacions Matem\`atiques},
     volume = {41},
     year = {1997},
     pages = {357-373},
     mrnumber = {MR1485488},
     zbl = {0910.32039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41321}
}
García Zamora, Alexis. Foliations in algebraic surfaces having a rational first integral.. Publicacions Matemàtiques, Tome 41 (1997) pp. 357-373. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41321/