We study the Lusternik-Schnirelmann category of some CW-complexes with 3 cells, built on Y = S2n Uk[i2n,i2n] e4n. In particular, we prove that an R-local space, in the sense of D. Anick, of LS-category 3 and of the homotopy type of a CW-complex with 3 R-cells, has a cup-product of length 3 in its algebra of cohomology. This result is no longer true in the framework of mild spaces.
@article{urn:eudml:doc:41304, title = {LS-cat\'egorie de CW-complexes \`a 3 cellules en th\'eorie homototique R-locale.}, journal = {Publicacions Matem\`atiques}, volume = {41}, year = {1997}, pages = {563-576}, mrnumber = {MR1485504}, zbl = {0896.55001}, language = {fr}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41304} }
Scheerer, Hans; Tanré, Daniel. LS-catégorie de CW-complexes à 3 cellules en théorie homototique R-locale.. Publicacions Matemàtiques, Tome 41 (1997) pp. 563-576. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41304/