Integrability of a linear center perturbed by a fourth degree homogeneous polynomial.
Chavarriga, Javier ; Giné, Jaume
Publicacions Matemàtiques, Tome 40 (1996), p. 21-39 / Harvested from Biblioteca Digital de Matemáticas

In this work we study the integrability of a two-dimensional autonomous system in the plane with linear part of center type and non-linear part given by homogeneous polynomials of fourth degree. We give sufficient conditions for integrability in polar coordinates. Finally we establish a conjecture about the independence of the two classes of parameters which appear in the system; if this conjecture is true the integrable cases found will be the only possible ones.

Publié le : 1996-01-01
DMLE-ID : 3794
@article{urn:eudml:doc:41255,
     title = {Integrability of a linear center perturbed by a fourth degree homogeneous polynomial.},
     journal = {Publicacions Matem\`atiques},
     volume = {40},
     year = {1996},
     pages = {21-39},
     mrnumber = {MR1397005},
     zbl = {0851.34001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41255}
}
Chavarriga, Javier; Giné, Jaume. Integrability of a linear center perturbed by a fourth degree homogeneous polynomial.. Publicacions Matemàtiques, Tome 40 (1996) pp. 21-39. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41255/