On the analytic capacity and curvature of some Cantor sets with non-σ-finite length.
Mattila, Pertti
Publicacions Matemàtiques, Tome 40 (1996), p. 195-204 / Harvested from Biblioteca Digital de Matemáticas

We show that if a Cantor set E as considered by Garnett in [G2] has positive Hausdorff h-measure for a non-decreasing function h satisfying ∫0 1 r−3 h(r)2 dr < ∞, then the analytic capacity of E is positive. Our tool will be the Menger three-point curvature and Melnikov’s identity relating it to the Cauchy kernel. We shall also prove some related more general results.

Publié le : 1996-01-01
DMLE-ID : 3785
@article{urn:eudml:doc:41245,
     title = {On the analytic capacity and curvature of some Cantor sets with non-$\sigma$-finite length.},
     journal = {Publicacions Matem\`atiques},
     volume = {40},
     year = {1996},
     pages = {195-204},
     mrnumber = {MR1397014},
     zbl = {0888.30026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41245}
}
Mattila, Pertti. On the analytic capacity and curvature of some Cantor sets with non-σ-finite length.. Publicacions Matemàtiques, Tome 40 (1996) pp. 195-204. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41245/