If E is a closed subset of locally finite Hausdorff (2n-2)-measure on an n-dimensional complex manifold Ω and all the points of E are nonremovable for a meromorphic mapping of Ω E into a compact Kähler manifold, then E is a pure (n-1)-dimensional complex analytic subset of Ω.
@article{urn:eudml:doc:41242, title = {On the removable singularities for meromorphic mappings.}, journal = {Publicacions Matem\`atiques}, volume = {40}, year = {1996}, pages = {229-232}, mrnumber = {MR1397017}, zbl = {0865.32008}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41242} }
Chirka, Evgeny M. On the removable singularities for meromorphic mappings.. Publicacions Matemàtiques, Tome 40 (1996) pp. 229-232. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41242/