The Mislin genus G(N) of a finitely generated nilpotent group N with finite commutator subgroup admits an abelian group structure. If N satisfies some additional conditions -we say that N belongs to N 1- we know exactly the structure of G(N). Considering a direct product N1 x ... x Nk of groups in N 1 takes us virtually always out of N 1. We here calculate the Mislin genus of such a direct product.
@article{urn:eudml:doc:41238,
title = {Calculating the genus of a direct product of certain nilpotent groups.},
journal = {Publicacions Matem\`atiques},
volume = {39},
year = {1995},
pages = {241-261},
mrnumber = {MR1370884},
zbl = {0849.20021},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41238}
}
Hilton, Peter; Scevenels, Dirk. Calculating the genus of a direct product of certain nilpotent groups.. Publicacions Matemàtiques, Tome 39 (1995) pp. 241-261. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41238/