The Mislin genus G(N) of a finitely generated nilpotent group N with finite commutator subgroup admits an abelian group structure. If N satisfies some additional conditions -we say that N belongs to N 1- we know exactly the structure of G(N). Considering a direct product N1 x ... x Nk of groups in N 1 takes us virtually always out of N 1. We here calculate the Mislin genus of such a direct product.
@article{urn:eudml:doc:41238, title = {Calculating the genus of a direct product of certain nilpotent groups.}, journal = {Publicacions Matem\`atiques}, volume = {39}, year = {1995}, pages = {241-261}, mrnumber = {MR1370884}, zbl = {0849.20021}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41238} }
Hilton, Peter; Scevenels, Dirk. Calculating the genus of a direct product of certain nilpotent groups.. Publicacions Matemàtiques, Tome 39 (1995) pp. 241-261. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41238/