We obtain (weighted) Poincaré type inequalities for vector fields satisfying the Hörmander condition for p < 1 under some assumptions on the subelliptic gradient of the function. Such inequalities hold on Boman domains associated with the underlying Carnot- Carathéodory metric. In particular, they remain true for solutions to certain classes of subelliptic equations. Our results complement the earlier results in these directions for p ≥ 1.
@article{urn:eudml:doc:41233, title = {Subelliptic Poincar\'e inequalities: the case p \< 1.}, journal = {Publicacions Matem\`atiques}, volume = {39}, year = {1995}, pages = {313-334}, mrnumber = {MR1370889}, zbl = {0895.26005}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41233} }
Buckley, Stephen M.; Koskela, Pekka; Lu, Guozhen. Subelliptic Poincaré inequalities: the case p < 1.. Publicacions Matemàtiques, Tome 39 (1995) pp. 313-334. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41233/