We obtain (weighted) Poincaré type inequalities for vector fields satisfying the Hörmander condition for p < 1 under some assumptions on the subelliptic gradient of the function. Such inequalities hold on Boman domains associated with the underlying Carnot- Carathéodory metric. In particular, they remain true for solutions to certain classes of subelliptic equations. Our results complement the earlier results in these directions for p ≥ 1.
@article{urn:eudml:doc:41233,
title = {Subelliptic Poincar\'e inequalities: the case p \< 1.},
journal = {Publicacions Matem\`atiques},
volume = {39},
year = {1995},
pages = {313-334},
mrnumber = {MR1370889},
zbl = {0895.26005},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41233}
}
Buckley, Stephen M.; Koskela, Pekka; Lu, Guozhen. Subelliptic Poincaré inequalities: the case p < 1.. Publicacions Matemàtiques, Tome 39 (1995) pp. 313-334. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41233/