On the definition of the dual Lie coalgebra of a Lie algebra.
Diarra, Bertin
Publicacions Matemàtiques, Tome 39 (1995), p. 349-354 / Harvested from Biblioteca Digital de Matemáticas

Let L be a Lie algebra over a field K. The dual Lie coalgebra Lº of L has been defined by W. Michaelis to be the sum of all good subspaces V of the dual space L* of L: V is good if tm(V) ⊂ V ⊗ V, where m is the multiplication of L. We show that Lº = tm-1(L* ⊗ L*) as in the associative case.

Publié le : 1995-01-01
DMLE-ID : 3772
@article{urn:eudml:doc:41231,
     title = {On the definition of the dual Lie coalgebra of a Lie algebra.},
     journal = {Publicacions Matem\`atiques},
     volume = {39},
     year = {1995},
     pages = {349-354},
     mrnumber = {MR1370891},
     zbl = {0857.16035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41231}
}
Diarra, Bertin. On the definition of the dual Lie coalgebra of a Lie algebra.. Publicacions Matemàtiques, Tome 39 (1995) pp. 349-354. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41231/