Let L be a Lie algebra over a field K. The dual Lie coalgebra Lº of L has been defined by W. Michaelis to be the sum of all good subspaces V of the dual space L* of L: V is good if tm(V) ⊂ V ⊗ V, where m is the multiplication of L. We show that Lº = tm-1(L* ⊗ L*) as in the associative case.
@article{urn:eudml:doc:41231, title = {On the definition of the dual Lie coalgebra of a Lie algebra.}, journal = {Publicacions Matem\`atiques}, volume = {39}, year = {1995}, pages = {349-354}, mrnumber = {MR1370891}, zbl = {0857.16035}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41231} }
Diarra, Bertin. On the definition of the dual Lie coalgebra of a Lie algebra.. Publicacions Matemàtiques, Tome 39 (1995) pp. 349-354. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41231/