The question of whether two parabolic elements A, B of SL2(C) are a free basis for the group they generate is considered. Some known results are generalized, using the parameter τ = tr(AB) - 2. If τ = a/b ∈ Q, |τ| < 4, and |a| ≤ 16, then the group is not free. If the subgroup generated by b in Z / aZ has a set of representatives, each of which divides one of b ± 1, then the subgroup of SL2(C) will not be free.
@article{urn:eudml:doc:41227, title = {Non-free two-generator subgroups of SL2(Q).}, journal = {Publicacions Matem\`atiques}, volume = {39}, year = {1995}, pages = {379-391}, mrnumber = {MR1370894}, zbl = {0848.20040}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41227} }
Farbman, S. Peter. Non-free two-generator subgroups of SL2(Q).. Publicacions Matemàtiques, Tome 39 (1995) pp. 379-391. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41227/