Let A be an algebra over the field of complex numbers with a (Hausdorff) topology given by a family Q = {qλ|λ ∈ Λ} of square preserving rλ-homogeneous seminorms (rλ ∈ (0, 1]). We shall show that (A, T(Q)) is a locally m-convex algebra. Furthermore we shall show that A is commutative.
@article{urn:eudml:doc:41219, title = {On locally pseudoconvexes square algebras.}, journal = {Publicacions Matem\`atiques}, volume = {39}, year = {1995}, pages = {89-93}, mrnumber = {MR1336358}, zbl = {0836.46037}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41219} }
Arhippainen, Jorma. On locally pseudoconvexes square algebras.. Publicacions Matemàtiques, Tome 39 (1995) pp. 89-93. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41219/