Let A be an algebra over the field of complex numbers with a (Hausdorff) topology given by a family Q = {qλ|λ ∈ Λ} of square preserving rλ-homogeneous seminorms (rλ ∈ (0, 1]). We shall show that (A, T(Q)) is a locally m-convex algebra. Furthermore we shall show that A is commutative.
@article{urn:eudml:doc:41219,
title = {On locally pseudoconvexes square algebras.},
journal = {Publicacions Matem\`atiques},
volume = {39},
year = {1995},
pages = {89-93},
mrnumber = {MR1336358},
zbl = {0836.46037},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41219}
}
Arhippainen, Jorma. On locally pseudoconvexes square algebras.. Publicacions Matemàtiques, Tome 39 (1995) pp. 89-93. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41219/