On a finite intersection of strictly pseudoconvex domains we define two kinds of natural Nevanlinna classes in order to take the growth of the functions near the sides or the edges into account. We give a sufficient Blaschke type condition on an analytic set for being the zero set of a function in a given Nevanlinna class. On the other hand we show that the usual Blaschke condition is not necessary here.
@article{urn:eudml:doc:41216, title = {Classes de Nevanlinna sur une intersection d'ouverts strictement pseudoconvexes.}, journal = {Publicacions Matem\`atiques}, volume = {39}, year = {1995}, pages = {107-159}, mrnumber = {MR1336360}, zbl = {0868.32006}, language = {fr}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41216} }
Menini, Chantal. Classes de Nevanlinna sur une intersection d'ouverts strictement pseudoconvexes.. Publicacions Matemàtiques, Tome 39 (1995) pp. 107-159. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41216/