We show the uniqueness and the existence of viscosity solutions of Hamilton-Jacobi equations on a smooth Banach space. The tool used is the variational principle of Deville, Godefroy and Zizler. The existence is given by Perron’s method. So we give a comparison assertion for semicontinuous solutions.
@article{urn:eudml:doc:41214, title = {Solutions de viscosit\'e des equations de Hamilton-Jacobi en dimension infinie. Cas stationnaire.}, journal = {Publicacions Matem\`atiques}, volume = {39}, year = {1995}, pages = {173-185}, mrnumber = {MR1336362}, zbl = {0849.49020}, language = {fr}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41214} }
El Haddad, El Mahjoub. Solutions de viscosité des equations de Hamilton-Jacobi en dimension infinie. Cas stationnaire.. Publicacions Matemàtiques, Tome 39 (1995) pp. 173-185. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41214/