On the Lie ball w of Cn, n ≥ 3, we prove that for all p ∈ [1,∞), p ≠ 2, the Hardy space Hp(w) is an uncomplemented subspace of the Lebesgue space Lp(∂0w, dσ), where ∂0w denotes the Shilov boundary of w and dσ is a normalized invariant measure of ∂0w.
@article{urn:eudml:doc:41205, title = {Projections on Hardy spaces in the Lie ball.}, journal = {Publicacions Matem\`atiques}, volume = {38}, year = {1994}, pages = {57-68}, mrnumber = {MR1291953}, zbl = {0824.46057}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41205} }
Bekollé, David. Projections on Hardy spaces in the Lie ball.. Publicacions Matemàtiques, Tome 38 (1994) pp. 57-68. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41205/