Let Ti (i = 1, 2, ..., d) be commuting null preserving transformations on a finite measure space (X, F, μ) and let 1 ≤ p < ∞. In this paper we prove that for every f ∈ Lp(μ) the averages
Anf(x) = (n + 1)-d Σ0≤ni≤n f(T1 n1 T2 n2 ... Td nd x)
converge a.e. on X if and only if there exists a finite invariant measure ν (under the transformations Ti) absolutely continuous with respect to μ and a sequence {XN} of invariant sets with XN ↑ X such that νB > 0 for all nonnull invariant sets B and such that the Radon-Nykodim derivative v = dν/dμ satisfies v ∈ Lq(xN,μ), 1/p + 1/q = 1, for each N ≥ 1.
@article{urn:eudml:doc:41203, title = {On a pointwise ergodic theorem for multiparameter semigroups.}, journal = {Publicacions Matem\`atiques}, volume = {38}, year = {1994}, pages = {81-87}, mrnumber = {MR1291955}, zbl = {0817.28010}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41203} }
Sato, Ryotaro. On a pointwise ergodic theorem for multiparameter semigroups.. Publicacions Matemàtiques, Tome 38 (1994) pp. 81-87. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41203/